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Static modelling

The principle of a Dark pool is the following:

It proposes a bid price with no guarantee of executed quantity at the
occasion of an OTC transaction.

Usually this price is lower than the bid price offered on the regular
market.

So one can model the impact of the existence of N dark pools (N ≥ 2) on
a given transaction as follows:

Let V > 0 be the random volume to be executed,

Let θi ∈ (0, 1) be the discount factor proposed by the dark pool i .

Let ri denote the percentage of V sent to the dark pool i for
execution.

Let Di ≥ 0 be the quantity of securities that can be delivered (or
mase available) by the dark pool i at price θiS .
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Cost of the executed order

The rest of the order is to be executed on the regular market, at price S .
Then the cost C of the whole executed order is given by

C = S
N∑
i=1

θi min (riV ,Di ) + S

(
V −

N∑
i=1

min (riV ,Di )

)

= S

(
V −

N∑
i=1

ρi min (riV ,Di )

)

where
ρi = 1− θi ∈ (0, 1), i = 1, . . . ,N.
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Mean Execution Cost

Minimizing the mean execution cost, given the price S , amounts to solving
the following maximization problem

max

{
N∑
i=1

ρiE (S min (riV ,Di )) , r ∈ PN

}
(1)

where PN :=
{

r = (ri )1≤i≤N ∈ RN
+ |
∑N

i=1 ri = 1
}

.

It is then convenient to include the price S into both random variables V
and Di by considering

Ṽ := V S and D̃i := DiS

instead of V and Di .
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The dynamical aspect

We consider the sequence Y n := (V n,Dn
1 , . . . ,D

n
N)n≥1.

We will take two types of stationarity assumptions on the sequence

(IID) ≡ The sequence (Y n)n≥1 is i.i.d. with

distribution ν = L(V ,D1, . . . ,DN
) on

(
RN+1
+ ,B(RN+1

+ )
)

.

(ERG )i ≡



(i) the sequence (V n,Dn
i )n≥1 is a stationary Feller

homogeneous Markov chain with distribution
L(V ,Di ),

(ii) the sequence (V n,Dn
i )n≥1 is ergodic i .e.

P-a.s.
1

n

n∑
k=1

δ(V k ,Dk
i )

(R2
+)

=⇒ νi = L(V ,Di ),
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Towards some solutions

There are two approaches to deal with this problem.

A classical maximization (under constraints using a Lagrangian).

An approach, somewhat more intuitive, based on a reinforcement
principle; the algorithm is devised by R. Berenstein and C.-A. Lehalle
in keeping with R. Almgren.

We will study both and try comparing their assets and drawbacks.
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The mean execution function of a dark pool

Let ϕ : [0, 1]→ R+ be the mean execution function of a single dark pool
defined by

∀r ∈ [0, 1] , ϕ(r) = ρE (min (rV ,D)) (2)

where ρ > 0, (V ,D) is an R2
+-valued random vector defined on a

probability space (Ω,A,P). To ensure the consistency of the model, we
assume that

V > 0 P− a.s., V ∈ L1(P) and P(D > 0) > 0 (3)

The positivity of V means that we consider only true orders. The fact that
D is not identically 0 means that the dark pool exists in practice.
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The function ϕ is clearly concave, non-decreasing, bounded and if

the distribution function of
D

V
is continuous on R∗+, (4)

then ϕ is everywhere differentiable on the unit interval [0, 1] with

ϕ′(r) = ρE
(
1{rV<D}V

)
, r ∈ [0, 1] . (5)

So the distribution of D
V has no atom except possibly at 0. It can be

interpreted as the fact the dark pool has no ”quantized” answer to an
order.
One extends ϕ on the whole real line into a concave non-decreasing
function with lim±∞ ϕ = ±∞.
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Extension of the mean execution function

One extends ϕ in the whole real line into a concave non decreasing
function with lim±∞ ϕ = ±∞.
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Optimal allocation of orders among N dark pools

Assume that V satisfies (3). We set for every r = (r1, . . . , rN) ∈ PN ,

Φ(r1, . . . , rN) :=
N∑
i=1

ϕi (ri ).

where for every i ∈ IN = {1, . . . ,N},

ϕi (u) := ρiE (min (uV ,Di )) , u ∈ [0, 1]

Based on the extension of the functions ϕi , we can formally extend Φ on
the whole affine hyperplan spanned by PN i .e.

HN :=

{
r = (r1, . . . , rN) ∈ RN |

N∑
i=1

ri = 1

}
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The Lagrangian Approach
We aim at solving the following maximization problem

max
r∈PN

Φ(r) (6)

The Lagrangian associated to the sole affine constraint is

L(r , λ) = Φ(r)− λ

(
N∑
i=1

ri − 1

)
(7)

So, for every

i ∈ IN ,
∂L

∂ri
= ϕ′i (ri )− λ.

This suggests that any r∗ ∈ arg maxPN
Φ iff ϕ′i (r∗i ) is constant when i runs

over IN or equivalently if

∀i ∈ IN , ϕ′i (r∗i ) =
1

N

N∑
j=1

ϕ′j(r∗j ). (8)
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Existence of maximum

To ensure that the candidate provided by the Lagragian approach is the
true one, we need an additional assumption on ϕ to take into account the
bahaviour of Φ on the boundary of ∂PN .

Proposition 1

Assume that (V ,Di ) satisfies (3) and (4) for every i ∈ IN . Assume that
the functions ϕi satisfy the following assumption

(C) ≡ min
i∈IN

ϕ′i (0) > max
i∈IN

ϕ′i

(
1

N − 1

)
. (9)

Then arg maxHN
Φ = arg maxPN

Φ ⊂ int(PN) where

arg max
PN

Φ =
{

r ∈ PN |ϕ′i (ri ) = ϕ′1(r1), i = 1, . . . ,N
}
.
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Interpretation and Comments

Assumption (C) is a kind of homogenity assumption on the rebates made
by the involved dark pools. If we assume that

P(Di = 0) = 0 for every i ∈ I
N

(all dark pools buy or sell at least one security at the announced price!),
then

(C) ≡ min
i∈I

N

ρi > max
i∈I

N

(
ρi
EV 1{ V

N−1
≤Di}

EV

)

since ϕ′i (0) = ρi EV . In particular, it is always satisfied when

ρi = ρ, i ∈ IN .
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Interpretation of Condition (C)
We consider the case where N = 2. We have then the two following
derivatives

ϕ
′
1(r1) and ϕ

′
2(r2) = ϕ

′
2(1− r1)
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Design of the stochastic algorithm

Remark: a1, . . . , aN are equal iff ai = a1+···+aN
N , ∀1 ≤ i ≤ N. Then using

the representation of the derivatives ϕ′i yields that, if Assumption (C) is
satisfied, then

r∗ ∈ arg max
PN

Φ⇔

∀i ∈ {1, . . . ,N} , E
(

V
(
ρi1{r∗i V<Di} −

1
N

∑N
j=1 ρj1{r∗j V<Dj}

))
= 0.

Consequently, this leads to the following recursive zero search procedure

rn+1
i = rni + γn+1Hi (rn,Y n+1), r0 ∈ PN , i ∈ IN , (10)

Gilles Pagès Optimal split of orders across liquidity pools



where for i ∈ IN , every r ∈ PN , every V > 0 and every D1, . . . ,DN ≥ 0,

Hi (r ,Y ) = V

ρi1{riV<Di} −
1

N

N∑
j=1

ρj1{rjV<Dj}


where (Y n)n≥1 is a sequence of random vectors with non negative

components such that, for every n ≥ 1 and i ∈ IN , (V n,Dn
i )

d
= (V ,Di ).

The underlying idea of the algorithm

is to reward the dark pools which outperform the mean of the N dark pools
by increasing the allocated volume sent at the next step (and conversely).

Gilles Pagès Optimal split of orders across liquidity pools



Constraint Problem

In this algorithm, we took into account the constraint

N∑
i=1

ri = 1,

but not
ri > 0, ∀1 ≤ i ≤ N.

So the algorithm may exit from the simplex PN stable. To overcome this
problem, we have two possibilities

1 Use a Lyapunov function and a strong mean-reverting assumption out
of PN : this solution is simpler from a mathematical point of view.

2 Force the coefficients ri to stay in PN by a truncation-projection
procedure: this solution is more efficient for users.
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Convergence Theorem

Theorem 1

Assume that V ∈ L2(P) and that Assumption (C) holds. Let γ := (γn)n≥1
be a step sequence satisfying the usual decreasing step assumption∑

n≥1
γn = +∞ and

∑
n≥1

γ2n < +∞.

Let (Y n)n≥1 be an i.i.d. sequence defined on a probability space (Ω,A,P).
Then, there exists an arg maxPN

Φ-valued random variable r∞ such that

rn
a.s.−→ r∞.
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Rate of convergence (Central Limit Theorem)

To establish a CLT , we need to ensure the existence of the Hessian of the
objective function Φ. This needs further assumption on a couple (V ,D)
which is that the conditional disctribution function

F
D

(u |V = v ,D > 0) := P(D ≤ u |V = v ,D > 0), u ≥ 0, v > 0,

admits a density f
D

(u, v) such that and satisfying



(i) F
D

(u |V = v ,D > 0) =
∫ u
0 f

D
(u′, v)du′

(ii) for every v > 0, u 7→ f
D

(u, v) is continuous and positive,

(iii) ∀ ε∈ (0, 1), sup
εV≤u≤V /ε

f
D

(u,V )V 2∈ L1(P).

(11)
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Central Limit Theorem

Theorem 2

Assume that Assumption (11) holds for every (V ,Di ), i ∈ IN and that
V ∈ L2+δ(P), δ > 0. Set γn = c

n , n ≥ 1 with c > 1
2<(λmin)

, where λmin

denotes the eigenvalue of A∞ := −Dh(r∞) |1⊥ with the lowest real part.
Then √

n (rn − r∞)
L−→ N (0, cΣ∗) (12)

where the asymptotic variance is given by

Σ∗ =

∫ ∞
0

eu(A
∞− Id

2c
)Σ∞e(A

∞− Id
2c
)t du

where Σ∞ = E
(
H (r∞,V ,D1, . . . ,DN) H (r∞,V ,D1, . . . ,DN)t

)
|1⊥ and(

A∞ − Id
2c

)t
stands for the transpose operator of A∞ − Id

2c ∈ L(1⊥).
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Convergence in (ERG ) setting
We assume that for every i ∈ {1, . . . ,N}, the sequence (V n,Dn

i )n≥1
satisfies (ERG )i with a limiting distribution (V ,Di ) satisfying the
consistency assumption (3) and the continuity assumption (4), which
implies by standard weak convergence arguments that for every i ∈ I

N
and

every u∈ R+,

1

n

n∑
k=1

V k1{uV k<Dk
i }
− E(V 1{uV≤Di}))

a.s.−→ 0

since the (non-negative) function fu(v , y) := v1{uv≤y} is P(V ,Di )-a.s.
continuous and O(v) as v →∞ by (4).
We assume that there exists an exponent αi ∈ (0, 1) such that

∀ u∈ R+,
1

n

n∑
k=1

V k1{uV k<Dk
i }
− E(V 1{uV<Di})

a.s. & in L2(P)
= O(n−αi )

(13)
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Convergence Theorem

Theorem 3

Let (Vn,D
1
n , . . . ,D

N
n )n≥1 be a stationary Feller homogeneous Markov

chain and assume that supn≥0 E(V n)4 < +∞. Furthermore, assume that
for every i ∈ I

N
, the sequence (V n,Dn

i )n≥1 is ergodic at rate αi ∈ (0, 1)
toward (V ,Di ). Assume that the distribution of (V ,Di ) satisfies the
consistency assumption (3) and the continuity assumption (4). If the step
sequence (γn)n≥1 satisfies∑
n≥1

γn = +∞, γn = o(nα−1) and
∑
n≥1

n1−α max(γ2n , |γn−γn+1|) <∞

where α := mini∈I
N
αi ∈ (0, 1), then the algorithm defined by (10) with

growth control parameter ϑ∈ (0, 2/3) a.s. converges towards
r∞ = argmaxP

N
Φ.
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Example

An example of process that satisfies the assumptions of the Theorem 3 is
the exponential of Ornstein-Uhlenbeck process (in continuous time) or an
auto-regressive process (in discrete time). Let (Y n)n be a sequence
defined by

∀n, Y n = (V ,Dn
1 , . . . ,D

n
N) = eX

n

where X n = (X n
0 , . . . ,X

n
N) satisfies the recursive equation of AR(1),

X n+1 = m + AX n + Σεn+1

with ‖A‖ < 1, εn ∼ N (0, IdN+1) and rk (Σ) = N + 1.
(Y n)n is geometrically α-mixing at rate ‖A‖n hence ergodic at rate 1

2 − ε.
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Description

This procedure originally introduced by R. Berenstein and C.-A. Lehalle is
based on a

reinforcementmechanism.

Let I ni be the cost induced by the execution of the order sent to dark pool
i at time n.

The proportion rni of the global order V n+1 to be sent to the dark
pool i for execution at time n + 1 is defined as proportional to this
profit i .e. by

∀i ∈ IN , rni :=
I ni∑
j I nj

.

The updating of the random vector I n is as follows

∀n ≥ 0,∀i ∈ IN , I n+1
i = I ni + ρi min

(
rni V n+1,Dn+1

i

)
, I 0i = 0.
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A new formulation

Elementary computations show that the algorithm can be written directly
in a recursive way in terms of the vector-valued-state-variable

X n =
I n

n

X n+1
i = X n

i −
1

n + 1

(
X n
i − ρi min

(
X n
i

X̄ n
V n+1,Dn+1

i

))
, i ∈ IN ,

where

X̄ n =
N∑
j=1

X n
j =

1

n

n∑
j=1

I nj

and

rni =
X n
i

X̄ n
.

This is a standard form for a stochastic algorithm (with step γn = 1
n ).
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Existence of an equilibrium

Proposition

Let N ≥ 1. Assume that (3) holds for every couple (V ,Di ), i ∈ IN .

(a) There exists a x∗ ∈ RN
+ such that

x̄∗ :=
∑
i∈IN

x∗i > 0 and ϕi

(
x∗i
x̄∗

)
= x∗i , i ∈ IN . (14)

(b) Let ψi := ϕi (u)
u , u > 0, i ∈ IN , ψ(0) = ϕ′(0) = ρEV 1{D>0}.

Assume that for every i ∈ IN , ψi is (continuous) decreasing on [0,∞)
and

(C′) ≡
∑
i∈IN

ψ−1i (min
i∈IN

ϕ′i (0)) < 1. (15)

Then there exists x∗ ∈ int(PN) satisfy (14).
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Corollary 1

If the functions ψi are continuous and decreasing and the rebate
coefficients ρi are equal (to 1) and if P(Di = 0) = 0 for every i ∈ IN , then
there exists an equilibrium point lying inside int(PN).

Proposition 3

An equilibrium x∗ satisfying (14) is locally uniformly attracting as soon as

∑
j∈IN

x∗j
(x∗)2

ϕ′j

(
x∗j
x̄∗

)
< 1− 1

x̄∗
max
i∈IN

ϕ′i

(
x∗i
x̄∗

)

where x̄∗ =
∑

i∈IN x∗i .
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A competitive system

A competitive differential system ẋ = h(x) is a system in which the field
h : RN 7→ RN is differentiable and satisfies

∀x ∈ RN , ∀ i , j ∈ I
N
, i 6= j ,

∂hi

∂xj
(x) > 0.

As concerns the reinforcement algorithm, the mean function h is given by

h : x 7−→

(
xi − ϕi

(
xi∑
j xj

))
1≤i≤N

, (16)

and under the standard differentiability assumption on the functions ϕi ’s,

∀x ∈ RN ,
∂hi

∂xj
(x) = ϕ′i

(
xi

x1 + · · ·+ x
N

)
xi

(x1 + · · ·+ x
N

)2
> 0.
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Advantages and Drawbacks

Drawbacks
I No hope to prove that all the equilibrium points lie in the interior of P

N

since one may always adopt an execution strategy which boycotts a
given dark pool or, more generally N0 dark pools. Elementary
combinatorial arguments show that there are at least 2N − 1
equilibrium points.

I As a competitive system, the algorithm has possibly a non converging
behaviour even in presence of a single (attracting) equilibrium. This is
to be compared to their cooperative counterparts (with negative non
diagonal partial derivatives).

Advantages
I on the contrary of the optimization algorithm, the reinforcement

algorithm naturally lives in the simplex PN .
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Abundance and Shortage
We compare the behaviour of both algorithms in different settings : the
IID one, the ERG one and with pseudo-real data (whose construction is
explained below).

We examine specifically two situations : abundance and shortage.

What we call ”abundance” is the fact that the mean of V is less that
the sum of the means of the Di , i .e.

EV ≤
N∑
i=1

EDi

,

and the ”shortage” is the situation where we have the contrary, i .e.

EV >
N∑
i=1

EDi .

The most interesting setting to compare them is the shortage since it is
the situation the most common in the market.
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Comparison Criterions

We present the performances of both algorithms and compare them to the
strategy devised by an insider ”oracle” who would know the true values of
V and Di . This “oracle” strategy is the best possible allocation.

∀n ≥ 1, min

(
V n,

N∑
i=1

Dn
i

)
.

So we introduce in the following figures

the allocation coefficients of the optimization algorithm and the
reinforcement algorithm (just drawn in the IID setting as example
because the best way to compare the two algorithms is to look at
their performances),
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Comparison Criterions

the ratios between the executed quantity and the sent quantity for the
three algorithms (we name it satisfaction), i .e. for every n ≥ 1,

◦

∑i0−1
i=1 ρiDi + ρi0

(
V −

∑i0−1
i=1 ρiDi

)
V n

for the oracle, where

ρ1 < ρ2 < · · · < ρN , and i0 such that
∑i0−1

i=1 Di < V ≤
∑i0

i=1 Di .

◦
∑N

i=1 ρi min (rni V n,Dn
i )

V n
for both algorithms.

the ratios between the satisfaction index of both optimization and
reinforcement algorithms and that of the oracle, i .e. for every n ≥ 1∑N

i=1 ρi min (rni V n,Dn
i )∑i0−1

i=1 ρiDi + ρi0

(
V −

∑i0−1
i=1 ρiDi

) .
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With log-normal simulated data (Shortage)
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Satisfaction evolution according to variance variation
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then increases but less smoothy and is perturbated.
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Exponential of OU

The quantity V and Di , i ∈ IN , are exponentials of an Ornstein-Uhlenbeck
process, i .e.

X n+1 = m + AX n + BΞn+1,

where ‖A‖ < 1, BB∗ ∈ Gl(d ,R) and

m =

 m1
...

mN+1

 ∈ RN+1, Ξn+1 =

Ξn+1
1
...

Ξn+1
N+1

 ∼ N (0, IN+1) i .i .d .,

eX
n

=


V n

Dn
1
...

Dn
N

 .
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Numerical Data

The initial value of the algorithms is r0i = 1
N , 1 ≤ i ≤ N and we set

ρ =

0.95
0.97
0.99

 , m =

1
...
1

 , A =


0.7 0.01 0.01 0.01

0.01 0.3 0.01 0.01
0.01 0.01 0.2 0.01
0.01 0.01 0.01 0.1

 ,

B =


0.02 0 0 0
0.01 0.9 0 0
0.01 0.01 0.6 0
0.01 0.01 0.01 0.3

 .
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Numerical Results (Shortage)
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Figure: Case N = 3, mV ≥
∑N

i=1 mDi , σV ≥ 1, σDi ≥ 1, 1 ≤ i ≤ N.
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Generation of pseudo-real data

We consider an asset volume V which we want buy or sell, and the
volumes which are offered by the N dark pools (Di )1≤i≤N . We have picked
up data on the market for V and the Di are building from the N assets
which are the most correlated with V , denoted by Si , i = 1, . . . ,N, and V
by the mixing function

∀1 ≤ i ≤ N,Di := βi

(
(1− αi )V + αiSi

EV

ESi

)
where

αi , i = 1, . . . ,N are the mixing coefficients,

βi , i = 1, . . . ,N some weights.

So
E(Di ) = βiE(V ).
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Abundance and Shortage Cases

If
∑N

i=1 βi < 1, then E
[∑N

i=1 Di

]
< EV : this is a shortage situation

and we use the algorithm to find the optimal allocation.

The simulation presented here have been made with the asset BNP
and the four most correlated assets with BNP, so N = 4.

The data used extend on 11 days. To explain the changes in the response
of the algorithms, we have underlined the days by drawing vertical lines to
separate the days of execution. We place in the shortage situation : we set

ρ =


0.94
0.96
0.98

1

 , β =


0.1
0.2
0.3
0.2

 and α =


0.4
0.6
0.8
0.2

 .
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Shortage case with pseudo-real data
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Figure: Case N = 4,
∑N

i=1 βi < 1, 0 < αi ≤ 0.2 and r0i = 1/N 1 ≤ i ≤ N
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Toward more realistic mean execution functions

One natural idea is to take into account that the rebate may depend on
the quantity rV sent to be executed by the dark pool. The mean
execution function of the dark pool can be modeled by

∀ r ∈ [0, 1], ϕ(r) = E(ρ(rV ) min(rV ,D)) (17)

where the rebate function ρ is a non-negative, bounded, non-decreasing
right differentiable function.
For the sake of simplicity, we assume that (V ,D) satisfies (4). The right
derivative of ϕ reads

ϕ′r (r) = E
(
ρ′r (rV )V min (rV ,D)

)
+ E

(
ρ(rV )V 1{rV<D}

)
, (18)

with in particular ϕ′(0) = ρ(0)E(V 1{D>0}) > 0 as above.
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The main gap is to specify the function ρ so that ϕ remains concave. But
the choice for ρ turns out to strongly depend on the (unknown)
distribution of the random variable D.
Example: V ,D ∼ E(λ) independent. The function g is defined by

g(u) := E(u ∧ D) =
1− e−uλ

λ
, u ≥ 0

so that, the execution function

ϕ(r) = E(ρ(rV )g(rV ))

will be concave as soon as the function ρ g is so. Typical choices are
ρ = gθ with θ∈ (0, λ] which may appear as not very realistic since the
rebate function is a structural feature of the different dark pools.
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A responsive dark pool

The dark pool may take into account the volume rV to decide which
quantity will really executed rather than simply the a priori deliverable
quantity D. One reason for such a behaviour is that the dark pool may
wish to preserve the possibility of future transactions with other clients.
So we introduce a delivery function ψ : R2

+ → R+, non-decreasing and
concave w.r.t. its first variable and satisfying 0 ≤ ψ(x , y) ≤ y , so that the
new mean execution function is as follows:

ϕ(r) = ρE (min(rV , ψ(rV ,D))) . (19)

It is clear that the function ϕ is concave (as the minimum of two concave
functions) and bounded. In this case, the first (right) derivative of ϕ reads

ϕ′r (r) = ρE
(
V
(
1{rV<ψ(rV ,D)} + ψ′x(rV ,D)1{rV≥ψ(rV ,D)}

))
(20)

where ψ′x denotes the right derivative with respect to x . In particular
ϕ′r (0) = ρE(V 1{D>0}) > 0.
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Example
We consider for modelling the quantity delivered by the dark pool i a
function where we can define a minimal quantity required to begin to
consum Di , namely

ψi (rV ,Di ) = Di1{rV>siDi}

where si is a parameter of the dark pool i assumed to be deterministic.
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Figure: Pseudo-real data with N = 4,
∑N

i=1 βi < 1, 0 < αi ≤ 0.2 and r0i = 1/N,

1 ≤ i ≤ N, s = (0.3, 0.2, 0.2, 0.3)t .
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Optimization vs reinforcement ?

For practical implementation what conclusions can be drawn form our
investigations on both procedures.

Both reach quickly a stabilization/convergence phase close to
optimality.

The reinforcement algorithm leaves the simplex structurally stable
which means the proposed dispatching at each time step is realistic
whereas the stochastic Lagrangian algorithm may sometimes need to
be corrected.

However, in a high volatility context, the stochastic Lagrangian
algorithm clearly prevails with performances that may be significantly
better performance.

This optimization procedure also relies on established convergence
results in a rather general framework (stationary α-mixing input data).

Given the computational cost of these procedures which is close to
zero, a good strategy is probably to implement both in parallel.
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Variants of the implementation

Resetting the step

Constant step vs decreasing step

Convergence vs pursuit
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